

Datasheet – TEC Controller TEC-1122 (2x (±10 A / ±21 V))

Support / First Steps

Meerstetter Engineering provides technical support for all products and helps you to integrate a product into your solution. Most of your questions should be solved by reading the provided <u>user manuals</u> of the corresponding product or the <u>FAQ</u> (frequently asked questions).

For further help or if you have any other questions, please do not hesitate to contact us. We are happy to help you. You can contact us by email <u>support@meerstetter.ch</u>.

Meerstetter's Product Family Compatibility

The Meerstetter LDD- and TEC-Families have been developed to work along with each other. They share the same platform bus, communication protocol and hardware architecture. See the following table for an overview of the LDD- and TEC-Families.

LDD-Family		
LDD-1321	0-1.5 A / 0-14 V	CW, Add on TEC Controller available
LDD-1301	0-20 A / 0.5-45 V	1 ms - CW
LDD-1303	0-20 A / 1-120 V	1 ms - CW
LDD-1137	0-75 A / 0-70 V	0.5 µs - CW, modulated, QCW and pulsed modes
LDD-1124-SV	0-1.5 A / 0-15 V	1 μs - CW, modulated, QCW and pulsed modes
LDD-1121-SV	0-15 A / 0-15 V	1 μs - CW, modulated, QCW and pulsed modes
LDD-1125-HV	0-30 A / 0-27 V	1 μs - CW, modulated, QCW and pulsed modes
TEC-Family		
TEC-1092	±1.2 A / ±9.6 V	Micro, single channel
TEC-1091	±4 A / ±21 V	Small, single channel
TEC-1089-SV	±10 A / ±21 V	Medium, single channel
TEC-1162	±5 A / ±56 V	Medium-high, single channel
TEC-1090-HV	±16 A / ±30 V	Large, single channel
TEC-1163	±25 A / ±56 V	Extra-large, single channel
TEC-1161-4A	2 x (±4 A / ±21 V)	Small, dual channel
TEC-1161-10A	2 x (±10 A / ±21 V)	Medium, dual channel
TEC-1122-SV	2 x (±10 A / ±21 V)	Medium, dual channel
TEC-1166	2 x (±5 A / ±56 V)	Medium-high, dual channel
TEC-1123-HV	2 x (±16 A / ±30 V)	Large, dual channel
TEC-1167	2 x (±25 A / ±56 V)	Extra-large, dual channel

Thermoelectric Cooling Temperature Controller

Dual TEC Controller / Peltier Driver up to 2x (±10 A / ±21 V)

OEM TEC Controller

The TEC-1122 is a specialized TEC Controller / power supply able to precision-drive two independent Peltier elements.

Each channel features a true bipolar DC current source for cooling / heating, two temperature monitoring inputs (1x high resolution, 1x low resolution) and intelligent PID control with auto tuning. The TEC-1122 is fully digitally controlled, its hard- and firmware offer numerous communication and safety options.

The included PC-Software allows configuration, control, monitoring, and live diagnosis of the TEC Controller via USB and RS485. All parameters can be saved to non-volatile memory.

For the most straightforward applications, only a power supply, Peltier elements and two temperature sensors need to be connected to the TEC-1122. After power-up the unit will operate according to pre-configured values. (In standalone mode no control interface is needed.)

The TEC-1122 can handle either Pt100, Pt1000, NTC or Voltage temperature probes. For highest precision and stability applications a Pt100 / 4-wire input configuration is recommended. Analog measurement circuit is factory calibrated.

Low resolution temperature inputs allow the connection of NTC probes that are located on the heat sinks of the Peltier elements. This additional data is used to compensate for parasitic thermal conduction of Peltier elements. Also, it allows the control of external heat sink cooling fans.

The heating and cooling power is optimized by proprietary thermal management routines based on power balance models (for Peltier elements and resistive heaters).

The TEC-1122's two independent channels may also be operated in parallel to either drive two individual or one common load (current doubling).

Further functionality includes: Smooth temperature ramping, thermal stability indication and auto gain (NTC probes). The PC-Software allows data logging and configuration import/export.

Many features (hardware, software) of this OEM product are customizable upon request.

Features

Output Stage:

• Output Current / Channel: 0 to ±10 A, <1% Ripple (Dual 0 to ±16 A available as TEC-1123)

SV (Standard Voltage) Version:

- DC Input Voltage: 12 24 V
- Output Voltage / Channel: 0 to ±21 V (max. U_{IN} 4 V)

Main Features:

- Two Independent TEC Controller / Driver Channels
- Temperature Sensor Types: Pt100, Pt1000, NTC, Voltage
- Temperature Precision / Stability: <0.01°C
- Temperature Control & Measurement Frequency: 1 Hz, 10 Hz, 80 Hz
- Performance-optimized PID for Thermal Power Control
- Configuration / Diagnosis over all communication interfaces with PC Software
- Dimensions (L x W x H): 120 mm x 90 mm x 18 mm
- Efficiency: 96 % (@ 50% Load)
- Cooling over Base Plate
- Low Resolution Heat Sink NTC Temp. Sensor Input
- Measurement Inputs freely assignable to any Output Channel
- Bipolar output channels can be split into unipolar channels

Operation Modes:

- Stand-Alone without Live Control Interface
- Remote-Controlled over USB, RS485, I/O
- Script-Controlled over Lookup Table Read-Out

Driver Modes:

- DC Power Supply: Set Current or Voltage
- Temperature Control: PID Settings, Auto Tuning, optional Cool/Heat-Only or Resistor modes

Data Interfaces:

- USB 2.0 1kV isolated (FTDI Chip)
- 2x RS485 (Half-Duplex)

General Purpose I/O Features:

- 8x Digital I/O Signals (3.3 V / 5 V)
- Configurable as Input to control TEC-1122 (Enable, Temperature Up / Down etc.)
- Configurable as output to monitor TEC-1122 (Error Indication, Temperature Stable Indication etc.)

Optional Components:

• Various displays available up to 4x20 Chars (e.g., DPY-1113)

Further Information:

• Please contact us for additional information or consult the current TEC Controller User Manual (Document 5216).

HW v2.00

Dual TEC Controller / Peltier Driver up to 2x (±10 A / ±21 V)

Absolute Maximum Ratings

Supply voltage (DC) 27 V (-SV)

Operating Characteristics for Firmware >= v4.00

Temperature	-40°C to 90°C
Humidity	5 – 95%, non-condensing

Additional information about the charts above:

0

- Standard or Extended device temperature mode can be set as a software setting.
 - o In standard mode, the device throws an error and switches off if the maximal device temperature is reached.
- In extended mode, the device first reduces the maximum output current before it throws an error and switches off.
 The <u>Device Temperature</u> is the temperature which is being measured by the TEC Controller itself on its own PCB. This is the
- temperature which is relevant for the overtemperature behavior (left chart).
- The <u>System Base Plate</u> is assumed as the customers heatsink where the TEC Controller is mounted to.
 The right diagram shows the maximum temperature of the customers heatsink to not exceed the temperatures in the left diagram under the following conditions:
 - Between the TEC Controllers base plate and the customers heatsink this thermal pad:
 - Bergquist: "GP1500R-0.010-02-0816" was used. We recommend employing this or a similar product.
 - The TEC Controller is pressed with 1.2kPa to the System Base Plate. It is recommended to use the mounting holes of the TEC Controller to press the TEC Controller to the System Base Plate.
 - o The air ambient temperature was approximately 30°C colder than the System Base Plate.

Operating Characteristics for Firmware < v4.00

Temperature	-40 – 85°C
Humidity	5 – 95%, non-condensing

Test Condition:

TEC Controller pressed with 1.2kPa to an aluminum System Base Plate without any thermal conductivity material in between. Using a good thermal conductivity material is recommended for high output currents.

Standard or Extended Device Temperature Mode can be set as software setting.

Dual TEC Controller / Peltier Driver up to 2x (±10 A / ±21 V)

HW v2.00

TEC-1122

Electrical Characteristics for SV (Standard Voltage) Version

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
DC Power S	upply Input:				-	
UIN	Supply voltage	Measured directly on power input terminals 11.5 24		25.5	V	
U _{IN} Ripple	Ripple tolerance	UIN never below UIN min or above UIN max			300	mV _{PP}
lin	Max input current	Hint: Software limitation			20	Α
Output (per	Channel):					
Іоит	Bipolar current				±10	Α
Uout	Bipolar voltage	U _{IN} at least 4 V greater than U _{OUT} Measured directly on power input terminals		±21	V	
Іоит	Unipolar current ¹				10	Α
Uout	Unipolar voltage ¹	U _{IN} at least 4 V greater than U _{OUT} Measured directly on power output terminals		21	V	
Uout Ripple	Voltage ripple	R _{load} = 1.13 Ω, 10 A		90		тV _{PP}
System Cha	racteristics:					
η50%	Power efficiency	@ 50% load (10.5V, 10A per channel)		93		%
η100%	Power efficiency	@ 100% load (21V, 10A per channel)		96		%
Output Mon	itoring: (IOUT Resoluti	on is 7.3mA; U _{OUT} Resolution is 8.8mV)				
IOUT Read	Precision	@ 9.5 A		1	5	%
Uout Read	Precision	<u> </u>		3	%	

¹ In unipolar mode, the total output power is doubled in comparison to the bipolar mode, but the controller input current is limited to I_{IN} , which limits the total available output power. The controller limits the output current for each channel dynamically if the max input current limit is reached.

Output Safety Characteristics

Symbol	Parameter	Test Conditions / Hints	Test Conditions / Hints Min Typ				
Output Stage Protection Delays:							
toff Short circuit		Full load condition		10	30	μs	
tore Power system limits		Current and voltage limits	Current and voltage limits		200	μs	
Output Stage Current Supervision: (If the OUT+ and OUT- currents differ too much, an error is generated) Iout_DIFF Error threshold							

High Resolution Temperature Measurement Characteristics (Pt100 and Pt1000 Probes)

Measurement configuration = 23bit / 4-wire / unshielded cable <50mm

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
Thr, range	Range	Range is extendable upon request Default measurement range is -220°C +200°C Extended measurement range is -193°C +787°C	-100		+200	°C
Thr, prec	Precision	(EN 60751 / IEC 751)		0.005	0.01	°C
THR, COEFF	Temp. Coefficient	Relative to device temperature			1.6m	°C/K
THR, NOISE	Value Noise	Reference measurement fluctuations while output stage operating @70% load		0.003		°C
Thr, rep	Repeatability	Repeated measurements of reference resistors after up to 3 days		0.005		°C

TEC-1122

HW v2.00

Dual TEC Controller / Peltier Driver up to 2x (±10 A / ±21 V)

High Resolution Temperature Measurement Characteristics (NTC Probes)

NTC thermistor resistive input characteristics translate into temperature ranges valid for only one type of NTC probe. Below example is given in the case of an NTC $B_{25/100}$ 3988K R_{25} 10k temperature sensor.

Symbol	Parameter	Test Conditions / Hints Min Typ Max			Max	Units
RHR, RANGE ADC Gain PGA = 1		Low-°T Configuration NTC56K	3360		55720	Ω
		Corresponding temperature range	51.8 to -10.1			°C
		High-°T Configuration NTC18K	135		17910	Ω
		Corresponding temperature range	1	64.0 to 12	2	°C
	ADC Auto Gain	Mid-°T Configuration NTC39K			38805	Ω
$R_{HR, RANGE}$	PGA = 1 or 8	Corresponding temperature range		131.0 to -3.4		°C
		Very Low-°T Configuration NTC1M			1M	Ω
		Corresponding temperature range	131.0 to -55.5			°C

RHR, RANGE is the resistance range of the NTC sensor

High Resolution Temperature Measurement Characteristics (Voltage Measurement VIN1)

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
VSENS, DIFF	Range	Differential input voltage Temperature range depends on sensor used	-2.039		2.039	V
VHRUX, ABS	Range	Absolute input voltage	0.1		3.2	V

Low Resolution Temperature Measurement Characteristics (NTC only)

T_A = 25°C, measurement configuration = 12bit / 2-wire / unshielded cable <50mm, °T probe = NTC B_{25/100} 3988K R₂₅ 10k

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
	Dense		180		44600	Ω
K LR, RANGE	RLR, RANGE Range	Corresponding temperature range		150 to -6.0		°C

General Purpose Digital I/O Characteristics (GPIO1 ... GPIO8)

Unless otherwise noted: $T_A = 25^{\circ}C$, $U_{IN} = 24 \text{ V}$

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
Input Cha	racteristics:					
Uih	Logic high input threshold		2.38			V
U⊫	Logic low input threshold				0.93	V
U _{IMAX}	Maximum input voltage		-0.5		5.5	V
Output Ch (Microprocess	naracteristics: sor)					
Uон	Logic high output voltage	Output current 8mA	2.8			V
Uol	Logic low output voltage	Input current 8mA			0.4	V
ESD Prote	action:					
	ocessor and Connector)					
V _{PP}	ESD discharge	IEC61000-4-2			100	kV
RA	Series resistance		170	200	230	Ω

Dual TEC Controller / Peltier Driver up to 2x (±10 A / ±21 V)

HW v2.00

TEC-1122

Peltier elements, temperature probes, power supply and connectors not included.

TEC-1122

Operation Modes and Communication Options

The TEC-1122 is an OEM two-channel TEC Controller that is primarily designed to operate as a stand-alone device. Its basic operation status is visually indicated by on-board green and red LEDs and their blinking pattern. More detailed status information can be polled at any time by industry standard RS485 connection or by USB (see box below). The TEC-1122 can also operate in a remote-controlled manner, with parameters adjusted on the fly. Scripting capability by sequential lookup table read-out is supported.

Configured as a DC power-supply, the TEC-1122 can handle current and voltage settings. In the remote-control case, temperature data may be passed on to be processed by the host.

Also, the TEC Controller's two channels can be configured to operate in a 'parallel' mode to double the output current.

Configurable parameters further include sensor linearization (Pt100 / Pt1000) and Steinhart-Hart modeling (NTC), temperature acquisition hardware calibration, Peltier element modeling, PID controller auto tuning, nominal temperature ramping, current, voltage and temperature limits, error thresholds, etc. Please refer to the TEC Controller User Manual (Document 5216) for further information.

Example Configuration: TEC.	-1122-SV-PT100		
	I ltage Version: SV (Standard Voltage)	High Resolution Sensor Type: - PT100 (4 Wire) - PT1000 (4 Wire) - NTC (2 Wire) - VIN1	
	NTC1M. If you require	an older version (NTC18K, NTC39 our order or contact us: <u>contact@n</u>	
Thermocouple: To use our TEC Controllers w a VIN1 High Resolution Sense		K, you need a TCI-1181 in addition	to the TEC Controller with
		x20 character display directly to the our website for further information.	X11 connector of the
Customization: Many hardware and software Engineering with your enquiry		22 are customizable upon request. I	Please contact Meerstetter

Meerstetter Engineering GmbH Schulhausgasse 12 3113 Rubigen, Switzerland

Phone: +41 31 529 21 00 Email: contact@meerstetter.ch Website: www.meerstetter.ch

Meerstetter Engineering GmbH (ME) reserves the right to make changes without further notice to the product described herein. Information furnished by ME is believed to be accurate and reliable. However typical parameters can vary depending on the application and actual performance may vary over time. All operating parameters must be validated by the customer under actual application conditions.

Dual TEC Controller / Peltier Driver up to 2x (±10 A / ±21 V)

TEC-1122

HW v2.00

Change History

Date of change	Version	Changed/ Approved	HW- Version	Change / Reason
14 October 2024	Z	XF / ML	v2.00	 Add: Change History Add: New Main Feature: Measurement Inputs are freely assignable to any Output Channel Add: New Main Feature: Bipolar output channels can be split into unipolar channels Add: "Unipolar current per channel" and "Unipolar voltage per channel" specifications in "Electrical Characteristics"
				 section Add: Max Input Current (I_{IN}) specification in Electrical Characteristics section Mod: Changed naming of "Main"/"Object" measurement input to "High Resolution" measurement input
				 Mod: Changed naming of "Auxiliary"/"Sink" measurement input to "Low Resolution" measurement input Mod: Specified that the RS485 Data Interfaces only
				 Del: RS422 communication is not supported Del: "Bipolar output current" and "Bipolar output voltage"
				 Del: "Dipolal output output